什么是掃描隧道顯微鏡?工作原理是什么?
掃描隧道顯微鏡(scanning tunneling microscope,縮寫為STM),亦稱為掃描穿隧式顯微鏡,是一種利用量子理論中的隧道效應探測物質表面結構的儀器。它于1981年由格爾德·賓寧及海因里希·羅雷爾在IBM位于瑞士蘇黎世的蘇黎世實驗室發明,兩位發明者因此與恩斯特·魯斯卡分享了1986年諾貝爾物理學獎。
它作為一種掃描探針顯微術工具,掃描隧道顯微鏡可以讓科學家觀察和定位單個原子,它具有比它的同類原子力顯微鏡更加高的分辨率。此外掃描隧道顯微鏡在低溫下(4K)可以利用探針**精確操縱原子,因此它在納米科技既是重要的測量工具又是加工工具。
基本結構
隧道針尖的結構是掃描隧道顯微技術要解決的主要問題之一。針尖的大小、形狀和化學同一性不僅影響著掃描隧道顯微鏡圖象的分辨率和圖象的形狀,而且也影響著測定的電子態。 針尖的宏觀結構應使得針尖具有高的彎曲共振頻率,從而可以減少相位滯后,提高采集速度。如果針尖的**只有一個穩定的原子而不是有多重針尖,那么隧道電流就會很穩定,而且能夠獲得原子級分辨的圖象。針尖的化學純度高,就不會涉及系列勢壘。例如,針尖表面若有氧化層,則其電阻可能會高于隧道間隙的阻值,從而導致針尖和樣品間產生隧道電流之前,二者就發生碰撞。
由于儀器中要控制針尖在樣品表面進行高精度的掃描,用普通機械的控制是很難達到這一要求的。目前普遍使用壓電陶瓷材料作為x-y-z掃描控制器件。
壓電陶瓷利用了壓電現象。所謂的壓電現象是指某種類型的晶體在受到機械力發生形變時會產生電場,或給晶體加一電場時晶體會產生物理形變的現象。許多化合物的單晶,如石英等都具有壓電性質,但目前廣泛采用的是多晶陶瓷材料,例如鈦酸鋯酸鉛[Pb(Ti,Zr)O3](簡稱PZT)和鈦酸鋇等。壓電陶瓷材料能以簡單的方式將1mV-1000V的電壓信號轉換成十幾分之一納米到幾微米的位移。
用壓電陶瓷材料制成的三維掃描控制器主要有以下幾種
①三腳架型,由三根獨立的長棱柱型壓電陶瓷材料以相互正交的方向結合在一起,針尖放在三腳架的頂端,三條腿獨立地伸展與收縮,使針尖沿x-y-z三個方向運動。
②單管型,陶瓷管的外部電極分成面積相等的四份,內壁為一整體電極,在其中一塊電極上施加電壓,管子的這一部分就會伸展或收縮(由電壓的正負和壓電陶瓷的極化方向決定),導致陶瓷管向垂直于管軸的方向彎曲。通過在相鄰的兩個電極上按一定順序施加電壓就可以實現在x-y方向的相互垂直移動。在z方向的運動是通過在管子內壁電極施加電壓使管子整體收縮實現的。管子外壁的另外兩個電極可同時施加相反符號的電壓使管子一側膨脹,相對的另一側收縮,增加掃描范圍,亦可以加上直流偏置電壓,用于調節掃描區域。
③十字架配合單管型,z方向的運動由處在“十”字型中心的一個壓電陶瓷管完成,x和y掃描電壓以大小相同、符號相反的方式分別加在一對x、-x和y、-y上。這種結構的x-y掃描單元是一種互補結構,可以在一定程度上補償熱漂移的影響。
除了使用壓電陶瓷,還有一些三維掃描控制器使用螺桿、簧片、電機等進行機械調控。
由于儀器工作時針尖與樣品的間距一般小于1nm,同時隧道電流與隧道間隙成指數關系,因此任何微小的震動都會對儀器的穩定性產生影響。必須隔絕的兩種類型的擾動是震動和沖擊,其中震動隔絕是*主要的。隔絕震動主要從考慮外界震動的頻率與儀器的固有頻率入手。
電子學控制系統
掃描隧道顯微鏡是一個納米級的隨動系統,因此,電子學控制系統也是一個重要的部分。掃描隧道顯微鏡要用計算機控制步進電機的驅動,使探針逼近樣品,進入隧道區,而后要不斷采集隧道電流,在恒電流模式中還要將隧道電流與設定值相比較,再通過反饋系統控制探針的進與退,從而保持隧道電流的穩定。所有這些功能,都是通過電子學控制系統來實現的。圖1給出了掃描隧道顯微鏡電子學控制控制系統的框圖。
在掃描隧道顯微鏡的軟件控制系統中,計算機軟件所起的作用主要分為“在線掃描控制”和“離線數據分析”兩部分。
在線掃描控制
①參數設置功能
在掃描隧道顯微鏡實驗中,計算機軟件主要實現掃描時的一些基本參數的設定、調節,以及獲得、顯示并記錄掃描所得數據圖象等。計算機軟件將通過計算機接口實現與電子設備間的協調共同工作。在線掃描控制中一些參數的設置功能如下:
⑴“電流設定”的數值意味著恒電流模式中要保持的恒定電流,也代表著恒電流掃描過程中針尖與樣品表面之間的恒定距離。該數值設定越大,這一恒定距離也越小。測量時“電流設定”一般在“0.5-1.0nA” 范圍內。
⑵“針尖偏壓”是指加在針尖和樣品之間、用于產生隧道電流的電壓真實值。這一數值設定越大,針尖和樣品之間越容易產生隧道電流,恒電流模式中保持的恒定距離越小,恒高度掃描模式中產生的隧道電流也越大。“針尖偏壓”值一般設定在“50-100mV”范圍左右。
⑶“Z電壓”是指加在三維掃描控制器中壓電陶瓷材料上的真實電壓。Z電壓的初始值決定了壓電陶瓷的初始狀態,隨著掃描的進行,這一數值要發生變化。“Z電壓”在探針遠離樣品時的初始值一般設定在“-150.0mV— -200.0mV”左右。
⑷“采集目標”包括“高度”和“隧道電流”兩個選項,選擇掃描時采集的是樣品表面高度變化的信息還是隧道電流變化的信息。
⑸“輸出方式”決定了將采集到的數據顯示成為圖象還是顯示成為曲線。
⑹“掃描速度”可以控制探針掃描時的延遲時間,該值越小,掃描越快。
⑺“角度走向”是指探針水平移動的偏轉方向,改變角度的數值,會使掃描得到的圖象發生旋轉。
⑻“尺寸”是設置探針掃描區域的大小,其調節的*大值有量程決定。尺寸越小,掃描的精度也越高,改變尺寸的數值可以產生掃描圖象的放大與縮小的作用。
⑼“中心偏移”是指掃描的起始位置與樣品和針尖剛放好時的偏移距離,改變中心偏移的數值能使針尖發生微小尺度的偏移。中心偏移的*大偏移量是當前量程決定的*大尺寸。
⑽ “工作模式”決定掃描模式是恒電流模式還是恒高度模式。
⑾ “斜面校正”是指探針沿著傾斜的樣品表面掃描時所做的軟件校正。
⑿ “往復掃描”決定是否進行來回往復掃描。
⒀“量程”是設置掃描時的探測精度和*大掃描尺寸的大小。
這些參數的設置除了利用在線掃描軟件外,利用電子系統中的電子控制箱上的旋鈕也可以設置和調節這些參數[1]。
②馬達控制
當使用軟件控制馬達使針尖逼近樣品時,首先要確保電動馬達控制器的紅色按鈕處于彈起狀態,否則探頭部分只受電子學控制系統控制,計算機軟件對馬達的控制不起作用。馬達控制軟件將控制電動馬達以一個微小的步長轉動,使針尖緩慢靠近樣品,直到進入隧道區為止。
馬達控制的操作方式為:“馬達控制”選擇“進”,點擊“連續”按鈕進行連續逼近,當檢測到的隧道電流達到一定數值后,計算機會進行警告提示,并自動停止逼近,此時單擊“單步”按鈕,直到“Z電壓”的數值接近零時停止逼近,完成馬達控制操作。 離線數據分析
離線數據分析是指脫離掃描過程之后的針對保存下來的圖象數據的各種分析與處理工作。常用的圖象分析與處理功能有:平滑、濾波、傅立葉變換、圖象反轉、數據統計、三維生成等。
⑴平滑,平滑的主要作用是使圖象中的高低變化趨于平緩,消除數據點發生突變的情況。
⑵濾波,濾波的基本作用是可將一系列數據中過高的削低、過低的添平。因此,對于測量過程中由于針尖抖動或其它擾動給圖象帶來的很多毛刺,采用濾波的方式可以大大消除。
⑶傅立葉變換,快速傅立葉變換對于研究原子圖象的周期性時很有效。
⑷圖象反轉,將圖象進行黑白反轉,會帶來意想不到的視覺效果。
⑸數據統計,用統計學的方式對圖象數據進行統計分析。
⑹三維生成,根據掃描所得的表面型貌的二維圖象,生成直觀美麗的三維圖象。
大多數的軟件中還提供很多其它功能,綜合運用各種數據處理手段,*終得到自己滿意的圖象
掃描
STM工作時,探針將充分接近樣品產生一高度空間限制的電子束,因此在成像工作時,STM具有極高的空間分辯率,可以進行科學觀測。
探傷及修補
STM在對表面進行加工處理的過程中可實時對表面形貌進行成像,用來發現表面各種結構上的缺陷和損傷,并用表面淀積和刻蝕等方法建立或切斷連線,以消除缺陷,達到修補的目的,然后還可用STM進行成像以檢查修補結果的好壞。
微觀操作
STM在場發射模式時,針尖與樣品仍相當接近,此時用不很高的外加電壓(*低可到10V左右)就可產生足夠高的電場,電子在其作用下將穿越針尖的勢壘向空間發射。這些電子具有一定的束流和能量,由于它們在空間運動的距離極小,至樣品處來不及發散,故束徑很小,一般為毫微米量級,所以可能在毫微米尺度上引起化學鍵斷裂,發生化學反應。
用STM移動氙原子排出的“IBM”圖案移動,刻寫樣品
當STM在恒流狀態下工作時,突然縮短針尖與樣品的間距或在針尖與樣品的偏置電壓上加一脈沖,針尖下樣品表面微區中將會出現毫微米級的坑、丘等結構上的變化。針尖進行刻寫操作后一般并未損壞,仍可用它對表面原子進行成像,以實時檢驗刻寫結果的好壞。
移動針尖進行刻寫的辦法主要有兩種
①在反饋電路正常工作時,通過調節參考電流或偏置電壓的大小來調節針尖與樣品間的接觸電阻,達到控制針尖移動的目的。當加大參考電流或減小偏壓時為保證恒流工作,反饋將控制針尖移向樣品,從而減小接觸電阻。
②當STM處于隧道狀態時,固定反饋線路的輸出信號,關閉反饋,然后通過改變控制Z向運動的壓電陶瓷上所加電壓的大小來改變針尖與樣品的間距,這種方法較前者能夠更線性地控制隧道結寬度的變化,相對來說是較為理想的辦法。
刻寫的結果與針尖的清潔程度有密切關系。已經污染的針尖接觸表面后將產生一小坑;未使用過的清潔的針尖接觸表面則產生一小丘。清潔針尖在表面上產生小丘的原因是由于它與表面有粘接現象,此時若想使針尖與樣品的間距恢復到與表面接觸前的情況,針尖必須退回更多,這從另一個角度說明針尖的粘接已使表面產生一凸起部分。針尖的污染將會阻止它對表面的粘接,故使用過的針尖接觸表面后將會刻出一個小坑,坑的周圍還會有原先在坑內的原子翻出堆成的凸起邊緣。
室溫下在Au及Ag等金屬表面上刻寫出的微細結構在室溫下總是不穩定的,由于金屬原子的擴散,這些結構*多在幾小時內就會模糊以至消失。
在其他材料如Si(110)、Si(100)等表面上運用STM刻出穩定的結構卻是可能的。刻寫時,針尖向樣品移進2nm時,小坑深(從邊緣算起)0.7nm。在室溫條件下及*高真空中,這些圖形具有高穩定性,經很長時間后亦不發生變化。
STM可在金屬玻璃上進行刻寫操作,小丘的大小隨偏壓的增加而增加。產生小丘的原因通常認為是由于高電流密度引起了襯底的局部熔化,這些熔化物質在針尖負偏壓產生的靜電場作用下,會形成一突起的泰勒錐,電流去掉后,這個錐立即冷卻下來,在表面上形成一小丘……并不是所有的表面都可如此形成小丘的。襯底的熔點決定了局部熔化時所需的熱量;對于點源電子束,襯底實際獲取熱量不僅與電流密度有關,還取決于電子在其中的平均自由程及所用襯底的熱傳導系數;對于無序的金屬化玻璃Rh25Zr75,由于電子在其中的平均自由程較晶體及多晶金屬小一百倍,且熔點不是非常高,為1340K,因此電子束入射時其獲取熱量較多,相對較易被熔化,故容易在其上如此形成小丘
**性
與其他表面分析技術相比,STM具有如下**的優點
①具有原子級高分辨率,STM 在平行于樣品表面方向上的分辨率分別可達 0.1 nm 和 0.01 nm,即可以分辨出單個原子。
②可實時得到實空間中樣品表面的三維圖像,可用于具有周期性或不具備周期性的表面結構的研究,這種可實時觀察的性能可用于表面擴散等動態過程的研究。
③可以觀察單個原子層的局部表面結構,而不是對體相或整個表面的平均性質,因而可直接觀察到表面缺陷。表面重構、表面吸附體的形態和位置,以及由吸附體引起的表面重構等。
④可在真空、大氣、常溫等不同環境下工作,樣品甚至可浸在水和其他溶液中 不需要特別的制樣技術并且探測過程對樣品無損傷.這些特點特別適用于研究生物樣品和在不同實驗條件下對樣品表面的評價,例如對于多相催化機理、*一身地創、電化學反應過程中電極表面變化的監測等。
⑤ 配合掃描隧道譜(STS)可以得到有關表面電子結構的信息,例如表面不同層次的態密度。表面電子阱、電荷密度波、表面勢壘的變化和能隙結構等。
⑥利用STM針尖,可實現對原子和分子的移動和操縱,這為納米科技的全面發展奠定了基礎
局限性
盡管STM有著EM、FIM等儀器所不能比擬的諸多優點,但由于儀器本身的工作方式所造成的局限性也是顯而易見的。這主要表現在以下兩個方面
①STM的恒電流工作模式下,有時它對樣品表面微粒之間的某些溝槽不能夠準確探測,與此相關的分辨率較差。在恒高度工作方式下,從原理上這種局限性會有所改善。但只有采用非常尖銳的探針,其針尖半徑應遠小于粒子之間的距離,才能避免這種缺陷。在觀測*細金屬微粒擴散時,這一點顯得尤為重要。
②STM所觀察的樣品必須具有一定程度的導電性,對于半導體,觀測的效果就差于導體;對于絕緣體則根本無法直接觀察。如果在樣品表面覆蓋導電層,則由于導電層的粒度和均勻性等問題又限制了圖象對真實表面的分辨率。賓尼等人1986年研制成功的AFM可以彌補STM這方面的不足。
此外,在目前常用的(包括商品)STM儀器中,一般都沒有配備FIM,因而針尖形狀的不確定性往往會對儀器的分辨率和圖象的認證與解釋帶來許多不確定因素