-
奧林巴斯顯微鏡:人類視覺對顏色的感知
人類立體視覺是一個非常復雜的過程,是不能完全理解,盡管數百多年的緊張學習和建模。視覺涉及幾乎同時通過網絡的神經元,受體,和其他專門細胞相互作用的兩只眼睛和大腦。在這種感官過程的第一個步驟是在眼睛的光受體的刺激,光刺激或圖像轉換成信號,包含從每只眼睛的視覺信息通過視神經向大腦傳輸電信號。此信息的處理分幾個階段進行,最終到達大腦的視覺皮質。人類的眼睛是配備的各種光學元件,包括角膜,虹膜,瞳孔,水和玻璃
2020-09-04
-
奧林巴斯顯微鏡:暗場顯微鏡的照明
我們所有的人都相當熟悉的外觀和知名度的恒星在一個漆黑的夜晚,盡管他們從地球上的巨大距離。明星可以很容易地觀察到夜間,主要是因為微弱的光線和黑色的天空形成了鮮明的對比。但是星辰都閃耀著都晚一天,但他們白天是看不見的,因為壓倒性的亮度的太陽“鋪天蓋地”從星星微弱的光線,使他們看不見。在日全食期間,月亮進入地球和太陽之間的太陽和星星的光擋住了,現在可以看到,即使是白天。總之,對一個黑暗的背景暗淡的恒星光
2020-09-04
-
尼康顯微鏡:多色共聚焦顯微鏡的光學像差和物鏡選擇
優化的設計簡化了激光共聚焦顯微鏡的程度上,它已經成為一個標準的細胞生物學研究工具。然而,激光共聚焦顯微鏡變得更加強大,他們也變得更加苛刻的光學元件的。事實上,導致圖像質量的細微瑕疵廣角鏡的光學像差可以產生毀滅性的影響,在激光共聚焦顯微鏡。不幸的是,通常是隱藏的嚴格的光學要求,激光共聚焦顯微鏡的光學系統,保證了一個清晰的圖像,即使在顯微鏡是表現不佳。光學制造商提供了廣泛的顯微鏡物鏡,分別為特定應用設
2020-09-04
-
尼康顯微鏡:EPI-熒光照明光路
直到最近,熒光照明是一個選項僅適用于配備專門的高數值孔徑物鏡的研究級復合顯微鏡。這一技術在立體顯微鏡的需要不斷升級與引進的編碼基因和生物特異性熒光蛋白GFP(綠色熒光蛋白)等。體視顯微鏡的應用GFP觀察現在是如此普遍,立體聲熒光照明,更經常被稱為GFP照明,即使他們可以利用許多其他應用在生命科學和電子制造業。大幼蟲,線蟲,斑馬魚,卵母細胞和成熟的昆蟲標本,如可以方便地選擇和操作時,他們GFP標記的
2020-09-04
-
尼康顯微鏡:隨機光學重建顯微鏡(STORM)
所提供的寬視場的多個成像模式中,激光點掃描共聚焦,多光子熒光顯微鏡允許非侵入性的,固定和活細胞和組織中有高水平的特異性生化時間分辨成像。盡管傳統的熒光顯微鏡的優點,該技術在超微結構的調查,由于光的衍射,可以與標準的目標捕獲的信息量限制設置的分辨率極限的阻礙。在過去的幾年中,已經采用了一些新穎的儀器為基礎的方法來規避衍射極限,包括近場掃描光學顯微鏡(NSOM),受激發射損耗(STED)顯微鏡,
2020-09-04
-
奧林巴斯顯微鏡:鏡子的介紹
鏡子是被人利用,利用光的力量,也許是最古老的光學元件,甚至早于原油鏡頭。史前穴居迷住了他們的倒影在未受干擾的池塘和其他水體,但毫無疑問,直到埃及金字塔文物可以追溯到公元前1900年左右進行了檢查,沒有發現最早的人造鏡。在希臘 - 羅馬時期和中世紀鏡由高度拋光的金屬,如青銅,錫,銀,塑造成微微凸起的磁盤,提供超過一千年的人類。而不是直到晚12或早期第十三世紀中使用玻璃與金屬背襯的開發是為了尋找眼鏡,
2020-09-04
-
尼康顯微鏡:顯微物鏡的屬性
三個關鍵的設計特點的物鏡顯微鏡的極限分辨率極限。這些包括用來照亮試樣的孔徑角的光錐物鏡捕獲,和對象空間中的物鏡前透鏡和被檢體之間的折射率的光的波長。圖1中顯示的是通過一個簡單的雙透鏡的阿貝聚光照明顯微鏡的物鏡的剖開圖。光通過聚光鏡被組織成一個光錐到樣品上發出,然后被發送到物鏡前透鏡元件作為反錐形。照明錐的大小和形狀是一個函數的組合的物鏡和聚光鏡的數值孔徑。物鏡的孔徑角是由希臘字母θ表示,將在下面詳
2020-09-04
-
奧林巴斯顯微鏡:物鏡的數值孔徑和分辨率
顯微鏡物鏡的數值孔徑是其收集光并解決細標本細節在一個固定的物體距離的能力的量度。圖象形成光波穿過試樣和在倒置錐體進入物鏡,如圖1這個錐形光的縱向切片顯示了孔徑角,是由物鏡的焦距確定的值。角μ是二分之一的數值孔徑角(A),它與通過以下等式的數值孔徑:數值孔徑 (NA) = n(sin μ)其中n是物鏡的前透鏡和試樣玻璃蓋,一個值,該范圍為1.00空氣1.51專門浸沒油之間的成像介質的折射率。許多作者
2020-09-04