-
尼康顯微鏡,立體顯微鏡簡介
凱魯賓奧爾良1671被設計和建造的第一個立體式顯微鏡具有雙目鏡和匹配物鏡,但實際上是一個系統,只能由應用輔助鏡片實現圖像勃起偽立體儀器。奧爾良設計的一個主要缺點是,左側的圖像被投射到右目鏡和形象工程的左目鏡右側。它不是直到150年后,當查爾斯惠斯通爵士寫了一篇論文,雙目視覺立體顯微鏡有足夠的利益刺激進一步開展工作提供動力。在十九世紀中葉,弗朗西斯·赫伯特·溫漢姆倫敦設計的第一個真正意義上成功的體視
2020-09-04
-
奧林巴斯顯微鏡:熒光顯微鏡解剖式講解
到其他模式基于宏觀上的試樣的功能,如相位梯度,光的吸收,和雙折射的光學顯微鏡相比,能夠僅僅基于熒光發射性能的一個單一的分子種類的分布成像的熒光顯微鏡。因此,用熒光顯微鏡,與特定的熒光基團標記的胞內組分的精確位置進行監測,以及其相關聯的擴散系數,傳輸特性,以及與其它生物分子相互作用。此外,在熒光顯著的反應,以本地化的環境變量可以調查了pH值,粘度,折射率,離子濃度,膜電位,和在活細胞和組織中的極性溶
2020-09-04
-
尼康顯微鏡:活細胞顯微漂移校正焦點
直到20世紀80年代末,大多數生命科學的研究生物的結構復雜的細節,捕捉各種使用固定和染色標本(實際上,非生物)的細胞學特征的單一快照。然而,在過去的幾十年中,在生物科學和醫學的研究已經在很大程度上轉移了重點調查浩大的時間尺度上,從幾毫秒到幾小時不等的生命系統的分子,細胞和整個生物體水平上發生的動態過程。過渡到活細胞成像的司機已經先進的顯微儀器和更敏感的數碼相機的發展,以及新的合成和基因編碼的熒光基
2020-09-04
-
奧林巴斯顯微鏡:人類視覺對顏色的感知
人類立體視覺是一個非常復雜的過程,是不能完全理解,盡管數百多年的緊張學習和建模。視覺涉及幾乎同時通過網絡的神經元,受體,和其他專門細胞相互作用的兩只眼睛和大腦。在這種感官過程的第一個步驟是在眼睛的光受體的刺激,光刺激或圖像轉換成信號,包含從每只眼睛的視覺信息通過視神經向大腦傳輸電信號。此信息的處理分幾個階段進行,最終到達大腦的視覺皮質。人類的眼睛是配備的各種光學元件,包括角膜,虹膜,瞳孔,水和玻璃
2020-09-04
-
尼康顯微鏡:CCD成像基本原理
顯微攝影的主要媒介,在過去的50年里,一直是電影,曾在科學界以及無數忠實地再現圖像從光學顯微鏡。它只有在過去十年中,在電子相機和電腦技術的改進已經使數字成像更便宜和更容易使用,比傳統攝影。在圖1所示的是一個尼康Eclipse 600傳輸/反射光顯微鏡配備售后市場的珀耳帖冷卻的數碼相機能夠在一個較長的累積期間整合圖像。的照相機系統的控制由一個單獨的單元,其容納在一個IBM兼容個人計算機的FireWi
2020-09-04
-
奧林巴斯顯微鏡:DIC顯微鏡的基本概念
活細胞等透明,未染色的標本往往是難以觀察到,在傳統的明照明下使用全孔徑和分辨率的顯微鏡的物鏡和聚光系統。,首先在20世紀30年代開發的釉澤尼克相襯,經常使用這些具有挑戰性的標本圖像,但該技術受到暈文物,被限制到非常薄的樣品準備,不能利用充分聚光鏡和物鏡孔。基本差干涉對比(DIC)的系統,在1955年首次由Francis史密斯設計,兩個渥拉斯頓棱鏡附加的,一個聚光鏡的前焦平面的變形的偏振光顯微鏡物鏡
2020-09-04
-
尼康顯微鏡:隨機光學重建顯微鏡(STORM)
所提供的寬視場的多個成像模式中,激光點掃描共聚焦,多光子熒光顯微鏡允許非侵入性的,固定和活細胞和組織中有高水平的特異性生化時間分辨成像。盡管傳統的熒光顯微鏡的優點,該技術在超微結構的調查,由于光的衍射,可以與標準的目標捕獲的信息量限制設置的分辨率極限的阻礙。在過去的幾年中,已經采用了一些新穎的儀器為基礎的方法來規避衍射極限,包括近場掃描光學顯微鏡(NSOM),受激發射損耗(STED)顯微鏡,
2020-09-04
-
尼康顯微鏡,什么是共振掃描激光共聚焦顯微鏡?
激光掃描共聚焦顯微鏡已被證明是對固定和染色的細胞,組織中一個有用的工具,甚至整個生物體的光來源于區域從焦平面將消除高對比度。熒光蛋白在活細胞成像,然而越來越多的應用,現在需要顯微鏡的成像速度為毫秒級解開在許多生物過程中發生的復雜的動力學。不幸的是,傳統的激光掃描共聚焦顯微鏡由電流計鏡有限的采集速度,這是一個線性鋸齒控制信號以每像素幾微秒的速度驅動。這意味著掃描速率范圍從500毫秒到2秒,取決于圖像
2020-09-04