-
奧林巴斯顯微鏡,普通光學透鏡系統的缺陷(畸變)
顯微鏡等光學儀器的透鏡扭曲的形象的錯誤產生的球面透鏡表面的幾何形狀的缺陷(通常稱為“像差”)與由各種機制所困擾。有三個主要的來源的非理想透鏡作用(錯誤),在顯微鏡觀察。透鏡錯誤的三個主要類別,與波陣面,并相對于焦平面的顯微鏡的光學軸的方向。這些包括如色差和球面像差的光軸上透鏡的錯誤,主要離軸彗差,像散表現為錯誤,和像場彎曲。第三類的像差,在立體顯微鏡的變焦透鏡系統,常見的是,其中包括兩個桶形畸變和
2020-09-04
-
徠卡顯微鏡,FLCS - 熒光相關光譜進展
在單分子水平的表征物質已成為的標準劇目科研院所的一部分。最常用的方法之一,是熒光相關光譜(FCS),它可以用來檢查的動態性和在溶液中的熒光分子濃度。本文介紹了一種測量技術,結合了經典的FCS測量與時間相關的單光子計數,以獲得更精確??和可靠的結果。FCS是經常被用來研究的分子在溶液中的動態過程。然而,實驗因素嚴重影響的分析,如FCS數據記錄。典型的因素包括工件的測量系統中,雜散光的熒光基團的三線態
2020-09-04
-
尼康顯微鏡,立體顯微鏡簡介
凱魯賓奧爾良1671被設計和建造的第一個立體式顯微鏡具有雙目鏡和匹配物鏡,但實際上是一個系統,只能由應用輔助鏡片實現圖像勃起偽立體儀器。奧爾良設計的一個主要缺點是,左側的圖像被投射到右目鏡和形象工程的左目鏡右側。它不是直到150年后,當查爾斯惠斯通爵士寫了一篇論文,雙目視覺立體顯微鏡有足夠的利益刺激進一步開展工作提供動力。在十九世紀中葉,弗朗西斯·赫伯特·溫漢姆倫敦設計的第一個真正意義上成功的體視
2020-09-04
-
奧林巴斯顯微鏡:熒光顯微鏡解剖式講解
到其他模式基于宏觀上的試樣的功能,如相位梯度,光的吸收,和雙折射的光學顯微鏡相比,能夠僅僅基于熒光發射性能的一個單一的分子種類的分布成像的熒光顯微鏡。因此,用熒光顯微鏡,與特定的熒光基團標記的胞內組分的精確位置進行監測,以及其相關聯的擴散系數,傳輸特性,以及與其它生物分子相互作用。此外,在熒光顯著的反應,以本地化的環境變量可以調查了pH值,粘度,折射率,離子濃度,膜電位,和在活細胞和組織中的極性溶
2020-09-04
-
徠卡顯微鏡:多波長在熒光顯微鏡落射照明
熒光是一個過程,其中已吸收的光(光子)后的物質emitts的輻射的波長(顏色),其中長于吸收光,這個排放停止后立即停止激發。這種現象是熒光顯微鏡及其應用的基本元素。除此之外,“古典”在光學顯微鏡下的熒光激發,有可能兩個或多個光子具有較長wavengths比發射的激發激光共聚焦掃描顯微鏡通過現代技術來獲得相同的發光效果。 熒光作為autofluorescenc的生物和/或無機結構或所謂的次級熒
2020-09-04
-
尼康顯微鏡:活細胞顯微漂移校正焦點
直到20世紀80年代末,大多數生命科學的研究生物的結構復雜的細節,捕捉各種使用固定和染色標本(實際上,非生物)的細胞學特征的單一快照。然而,在過去的幾十年中,在生物科學和醫學的研究已經在很大程度上轉移了重點調查浩大的時間尺度上,從幾毫秒到幾小時不等的生命系統的分子,細胞和整個生物體水平上發生的動態過程。過渡到活細胞成像的司機已經先進的顯微儀器和更敏感的數碼相機的發展,以及新的合成和基因編碼的熒光基
2020-09-04
-
奧林巴斯顯微鏡:人類視覺對顏色的感知
人類立體視覺是一個非常復雜的過程,是不能完全理解,盡管數百多年的緊張學習和建模。視覺涉及幾乎同時通過網絡的神經元,受體,和其他專門細胞相互作用的兩只眼睛和大腦。在這種感官過程的第一個步驟是在眼睛的光受體的刺激,光刺激或圖像轉換成信號,包含從每只眼睛的視覺信息通過視神經向大腦傳輸電信號。此信息的處理分幾個階段進行,最終到達大腦的視覺皮質。人類的眼睛是配備的各種光學元件,包括角膜,虹膜,瞳孔,水和玻璃
2020-09-04
-
尼康顯微鏡:CCD成像基本原理
顯微攝影的主要媒介,在過去的50年里,一直是電影,曾在科學界以及無數忠實地再現圖像從光學顯微鏡。它只有在過去十年中,在電子相機和電腦技術的改進已經使數字成像更便宜和更容易使用,比傳統攝影。在圖1所示的是一個尼康Eclipse 600傳輸/反射光顯微鏡配備售后市場的珀耳帖冷卻的數碼相機能夠在一個較長的累積期間整合圖像。的照相機系統的控制由一個單獨的單元,其容納在一個IBM兼容個人計算機的FireWi
2020-09-04