-
尼康顯微鏡:完美的對焦系統(PFS)
目前在熒光蛋白技術革命驅動廣泛的相關聯的方法,包括使用的活細胞在熒光顯微鏡的各種攝像模式。在過去的幾年中,由于豐富的動態信息,它可以提供有關細胞功能的基本性質,在許多細胞生物學實驗室的活細胞成像已經成為一個必不可少的工具。也許最有趣的生物學問題,包括那些關于增長,分化,分裂和細胞凋亡的可視化在活細胞中,最終將被回答了長期的顯微鏡使用時間推移成像技術的調查。活細胞成像,其中的細胞必須保持在一個健康的
2020-09-04
-
尼康顯微鏡:活細胞成像對光學系統和CCD的要求
在活細胞研究設計的光學顯微鏡系統,主要考慮檢測器的靈敏度(信號與噪聲),圖像采集所需要的速度,以及標本的可行性。相對較高的光照強度和較長的曝光時間,通常采用固定的細胞和組織(如漂白是主要的考慮因素)中記錄圖像時,必須嚴格避免與活細胞。在幾乎所有的情況下,活細胞顯微代表了一種妥協之間實現最佳的圖像質量和保持健康的細胞。不必要的過采樣的時間點,使細胞含量超標的照明,空間分辨率和時間分辨率的實驗,而不是
2020-09-04
-
奧林巴斯顯微鏡:熒光的基本概念
熒光是敏感,其中創建的物理(例如,光的吸收),機械(摩擦),或化學機制從電子激發態的分子發光的無處不在的發光過程家族的成員。通過由紫外線或可見光的光子的分子的激發發光發電的是這樣一種現象稱為光致發光,正式分為兩大類,熒光和磷光,這取決于激發態的電子組態和排放路徑。熒光是一些原子和分子的屬性,在一個特定的波長吸收光,并隨后經過短暫的時間間隔更長的波長的光發射被稱為熒光壽命。發生的方法的磷光熒光的方式
2020-09-04
-
徠卡顯微鏡的景深,如何形成清晰的圖像
顯微鏡,景深常常被看作是一個經驗參數。在實踐中,它是由數值孔徑之間的相關性,分辨率和放大倍率。為了獲得最佳的視覺印象,現代顯微鏡的調整設施的生產領域和分辨率之間的最佳平衡深度 - 兩個參數,這在理論上呈負相關。視覺景深的實用價值在DIN / ISO標準中,字段的對象側上的深度被定義為“物體面的兩側上的空間內的軸向深度,可以移動對象圖像中沒有檢測到損失銳度,而的圖像平面的位置和物鏡維持“。但是,標準
2020-09-04
-
尼康顯微鏡:熒光激發塊的分類
落射熒光的干擾和吸收濾色鏡組合被安置在濾色鏡立方體(或光學塊),并包括激發濾光片,二色性分束器(通常稱為反光鏡),和光柵(或發射)的濾色鏡,如在圖1中示出(一)。使用本指南中選擇適當的濾色鏡設置為廣角熒光顯微鏡調查所用的發色團的激發和發射光譜特性相匹配。作為一個例子,圖1(b)給出一個典型的高性能帶通發射藍光激發濾色鏡組合的光譜。尼康熒光濾光器組合中所提供窄,中,寬的通帶激發版本與相應的發射濾色鏡
2020-09-04
-
尼康顯微鏡:電動顯微鏡的結構
電動顯微鏡部件及配件啟用研究者活細胞圖像采集自動化,范圍從毫秒到幾十或數百分鐘的時間刻度間隔時間推移實驗是特別有用的。可以加裝各種各樣的售后輔助部件,如機電遮光器,電動物鏡轉盤,微處理器控制的濾波器切換(濾光輪),電動載物臺,和軸向聚焦控制機制的研究級顯微鏡和交互控制由一個同伴工作站計算機使用市售圖像采集軟件包。然而,應該注意的是,組裝一個完全自動化的和優化的多維光學成像系統是一個非常復雜的任務。
2020-09-04
-
尼康顯微鏡:熒光顯微鏡的結構
由有機和無機樣品的光的吸收,隨后再輻射通常是既定的物理現象作為熒光或磷光的結果。通過光的發射熒光過程幾乎是同時地吸收的激發光的光子的吸收和發射,取值范圍通常小于一微秒的持續時間相對較短的時間之間的延遲。當發射仍然存在更長的時間后已經熄滅的激發光,該現象被稱為磷光。首先描述英國科學家喬治爵士G.斯托克斯于1852年,是負責這一術語時,他觀察到的礦物螢石發出紅光,當它被照亮的紫外線激發熒光。斯托克斯指
2020-09-04
-
奧林巴斯顯微鏡:激光共聚焦顯微鏡系統的結構
中常用的激光掃描共聚焦顯微鏡的激光是高強度的單色光源,這是有用的工具的各種技術,包括光學捕獲,壽命成像研究,光漂白恢復,和全內反射熒光。此外,激光掃描共聚焦熒光顯微鏡的光源,也是最常見的,并已動用,雖然次數不多,在傳統的寬視場熒光調查。激光器發出強烈的包單色光的協調性和高度平行,形成一個嚴密的光束,以非常低的速度擴張。比起其它光源,由激光發射極純的波長范圍鹵鎢燈或電弧放電燈是無與倫比的帶寬和相位關
2020-09-04