-
奧林巴斯顯微鏡:熒光顯微鏡的干涉濾光片
高分辨率熒光顯微成像系統及相關的定量應用中,特別是適用于在活細胞和組織的研究,需要精確的性能優化的熒光激發和檢測策略。熒光顯微鏡技術,可以沒有先進的如此顯著,近年來在每一個維度的當前狀態的藝術,沒有顯著的發展,包括光學顯微鏡,熒光基團的生物學和化學,也許是最重要的,過濾技術。高度專業化,先進的薄膜干涉濾光器的利用率提高了通用性和熒光技術,由以前使用明膠和玻璃過濾器依賴于嵌入式染料的吸收性能的能力遠
2020-09-04
-
尼康顯微鏡,偏振光的干擾
在顯微鏡的圖像的形成依賴于兩個關鍵的光學現象:衍射和干涉之間復雜的相互作用。 的標本的光通過散射和衍射成微小的細節和功能存在于試樣中的發散波的。 由試樣散射的光的發散被捕獲的目標和聚焦到中間圖像平面,其中疊加的光波通過的過程中, 干擾重組或求和,以產生一個放大的圖像的標本。發生的衍射和干涉的表面上密切的關系,因為它們實際上是表現為相同的物理過程,并產生表面上是相互影響的。 我們大多數人觀察到某種類
2020-09-04
-
奧林巴斯顯微鏡成像,什么是反卷積?
?反卷積進行大量計算的圖像處理技術,正被越來越多地利用改善在顯微鏡拍攝的數字圖像的對比度和分辨率。?根據一套旨在消除或扭轉引起的物鏡的孔徑有限的顯微鏡圖像中存在的模糊的方法,這些方法的基礎是。幾乎任何數字熒光顯微鏡獲得的圖像可以被反卷積,以及一些新的應用程序正在開發,應用反卷積技術透射光下的各種采集圖像對比度增強策略。?其中最合適的改進的主體,通過反卷積是從一系列的光學部分構成的三維蒙太奇。圍繞收
2020-09-04
-
尼康顯微鏡,熒光共振能量轉移(FRET)顯微鏡與熒光蛋白的基本原理
在活細胞中,動態的蛋白質之間的相互作用被認為是發揮了關鍵作用,調節許多信號轉導通路,以及廣泛的其他關鍵流程。 在過去,經典的生物化學方法,闡明了這種相互作用的機制是司空見慣,但是弱的或短暫的相互作用,可能會發生細胞內的天然環境是這些技術通常是透明的。 例如,合作一直懷疑蛋白本地化合作伙伴使用固定細胞免疫熒光顯微鏡檢查相互作用在原地 ,并已提交了大量的文獻報道基于這種技術的常用方法。 然而,由于在
2020-09-04
-
尼康顯微鏡的熒光原位雜交技術
?近四分之一個世紀以來已通過引入原位雜交的方法檢測和研究染色體和細胞的DNA序列在文獻中出現的第一個研究文章。?然而,在過去的15年里,發生了一場革命,光鏡下通過熒光技術的發展,允許前所未有的輕松,精密,準確定位,識別和生物醫學樣品的基因構成數據記錄。通過同時使用多個熒光色原位雜交的力量得以極大地延長。?多色熒光原位雜交(FISH),在其最簡單的形式中,可以用于識別盡可能多的雜交中使用的不同的熒光
2020-09-04
-
奧林巴斯顯微鏡成像,CCD掃描格式
?電荷耦合器件(CCD)的數字成像傳感器能夠在三種格式中的一種獲取圖像的:點掃描,行掃描和區域掃描。?每種格式在數字攝影和掃描文檔和圖像的具體應用。最簡單的數字掃描技術利用了單個像素單元檢測到在整個一系列的X和Y坐標的掃描圖像順序地一個。?這種類型的CCD探測器是相對便宜的,并從一個掃描站點提供一個統一的測量到另一個。?這種類型的系統的主要缺點是要組成一個完整的圖像和相機的XY平移機構的機械復雜性
2020-09-04
-
奧林巴斯顯微鏡成像,全幀CCD結構
?全畫幅電荷耦合器件(CCD)具有高密度能夠產生數字圖像與當前可用的最高分辨率的像素陣列。?這種流行的CCD架構已經被廣泛由于設計簡單,可靠性和易于制造的采用。在圖1中給出的全幀CCD圖紙所示的像素陣列由一個并行移位寄存器,其上的圖像由攝像機鏡頭的光學裝置投射或顯微鏡的光學系的。?在這種配置中,所有的像素陣列中的光電二極管的共同充當圖像平面中,并可在曝光期??間內檢測到的光子。?總圖像的微型部分被
2020-09-04
-
尼康顯微鏡,熒光顯微鏡汞燈和氙燈的對齊
?汞和氙弧燈現在被廣泛地用作照明源進行了大量在寬視場熒光顯微鏡調查。?游客可以得到實踐對準和聚焦弧光燈的汞或氙氣燃燒器利用互動式教學,模擬燈是如何調整在熒光顯微鏡。每次教程初始化時,弧光燈調節滑塊復位到一個隨機位置,在某些條件下,偏離了最佳調整投射到舞臺板弧形象。?操作教程,先選擇一盞燈類型(?汞或氙燈?),在本教程窗口下部的圓形按鈕。?其次,調整集電極鏡頭對焦滑塊,直到一個或兩個蝴蝶結形的圖像(
2020-09-04