-
奧林巴斯顯微鏡:光速是多少?
在外層空間的某個地方,數十億光年,從地球的宇宙大爆炸,原來光正在開辟新的理由,因為它繼續向外移動。與之形成鮮明對比的是,另一種形式的電磁輻射在地球上的起源,無線電波從就職現場情節露西顯示廣播首屈一指的深空某處,雖然大大減少幅度。這兩個事件背后的基本概念包括以光的速度(和所有其他形式的電磁輻射),哪些科學家已經徹底檢查,并表示為一個恒定值方程的符號c表示。不是真正的常數,而是在真空中的最大速度,光的
2020-09-03
-
徠卡顯微鏡:膜片鉗技術
特別是在神經科學,生理的離子通道一直感興趣的主要話題。膜片鉗技術的發展,20世紀70年代中后期,電生理學家新的前景。它允許高精度電流錄音不僅整個細胞,同時也切除蜂窩補丁。即使單通道開幕活動進行調查。然而,由于其復雜的技術,物理和生物的背景中,需要高靈敏度的設備和實驗者所需量龐大的技能,電仍然是在實驗室的日常工作??中最具挑戰性的方法之一。????圖?2:使用相位對比圖像的補丁吸管連接到一個培養的小
2020-09-03
-
尼康顯微鏡:調制傳遞函數(MTF)
調制傳遞函數(MTF),這是一種測量顯微鏡的能力,轉移到中間像平面在特定的分辨率從檢體的對比度被稱為一定量的特點是可以用光學顯微鏡的分辨率和性能。 調制傳遞函數的計算是一種機制,它往往是利用光學制造商結合成一個單一的說明書中的分辨率和對比度的數據。調制傳遞函數的特征不僅傳統的光學系統是非常有用的,但也如光子系統模擬和數字視頻攝像機,圖像增強,膠片掃描儀。 此概念是來自于電氣工程中使用的相關程度的輸
2020-09-03
-
尼康顯微鏡:熒光顯微鏡原理和結構
由有機和無機樣品的光的吸收,隨后再輻射通常是既定的物理現象作為熒光或磷光的結果。通過光的發射熒光過程幾乎是同時地吸收的激發光的光子的吸收和發射,取值范圍通常小于一微秒的持續時間相對較短的時間之間的延遲。當發射仍然存在更長的時間后已經熄滅的激發光,該現象被稱為磷光。首先描述英國科學家Sir George G. Stokes于1852年,是負責這一術語時,他觀察到的礦物螢石發出紅光,當它被照亮的紫外線
2020-09-03
-
尼康顯微鏡:共聚焦顯微鏡的基本概念
比傳統的光學顯微鏡,共聚焦顯微鏡提供了幾個優點,包括淺景深,消除焦眩光,以及收集串行光部分的能力,從厚厚的標本。 在生物醫學科學中,一個主要的應用共焦顯微鏡涉及成像無論是固定的或活的細胞和組織,通常被標記的一個或多個熒光探針。當使用常規的寬視場光學顯微鏡,仲由樣品發出的熒光,出現相差的感興趣區域的成像熒光樣品往往干擾是在焦點的那些功能的分辨率。 這種情況是特別有問題的樣品具有大于約2微米的厚度。
2020-09-03
-
奧林巴斯顯微鏡FVMPE-RS全新多光子掃描顯微鏡問世
?21世紀,生命科學對微觀世界的探索正以意想不到的速度不斷深入。然而,隨著研究工作取得越來越大的進展,越來越多的科研項目遇到了一個個難以突破的技術難關。像如何消除活體生物樣品成像的深度限制?怎樣實現空間精確光刺激?什么時候可以攻克多色多光子成像技術難點?現有顯微鏡產品的性能已經無法完全滿足科研工作的要求。????? 2013年9月,顯微鏡技術革命的領導企業奧林巴斯,成功推出了新時代FVMPE-RS
2020-09-03
-
尼康顯微鏡熒光蛋白簡介
最終在20世紀60年代初發現了綠色熒光蛋白在細胞生物學預示著一個新的時代,使調查人員運用分子克隆方法,融合多種蛋白質和酶的目標熒光團部分,以在生物系統中監控細胞過程用光學顯微鏡和相關的方法。?當加上廣角熒光和共聚焦顯微鏡最近的技術進步,包括超快的低光數碼相機和激光控制系統multitracking,綠色熒光蛋白,它的顏色轉移的遺傳衍生工具已在成千上萬的活細胞成像實驗展示了寶貴的服務。?下村修和弗蘭
2020-09-03
-
徠卡公司贊助2013錄影帶獎的德國眼科學會
柏林,德國。 由于現代外科技術,眼科醫生現在可以做比以往任何時候都更加節省患者的視力或矯正視力缺陷。 在教學中,學生和合格的眼科醫生復雜的技術,高品質的教育影片中扮演一個重要的角色。 DOG在第111屆國會,三個很好的例子,2013錄影帶獎,由徠卡顯微系統贊助區別。 今年的獲獎者是博士,教授HC弗朗茨Grehn,維爾茨堡,醫學博士。 RAID Darawsha,埃森,醫學博士教授。 布克哈德迪克,
2020-09-03