-
徠卡顯微鏡:激光顯微切割的歷史
激光顯微切割的精確分離的樣品,用聚焦的激光束的顯微鏡操控技術。這種技術提供了一個精確的和無污染的解決方案的單個細胞或組織的分離和篩選。今天,它是一個既定的方法,大量的應用,主要是在分子生物學,特別是核酸研究,神經科學,發育生物學,癌癥研究,取證,蛋白質組學,植物研究,切割細胞培養和單細胞隔離。現代激光顯微切割技術有它的根在20?日世紀初。它已經穩步推進,多年來修改。下面的文章是從它的起源到今天的最
2020-09-04
-
徠卡顯微鏡:活細胞成像技術
復雜和/或快速的細胞動力學的理解是探索生物過程的一個重要步驟。因此,今天的生命科學研究越來越注重動態過程,如細 胞遷移,細胞,器官或整體動物形態學變化和生理(如細胞內的離子成分的變化)事件實時的活標本。解決這些具有挑戰性的需求的方法之一是采用若干統稱活細胞成像的光學方法。活細胞成像活細胞的動力學過程,而不是給細胞的當前狀態的一個“快照” -允許調查將改編成電影的快照。活細胞成像提供了空間和時間信息
2020-09-04
-
尼康顯微鏡:隨機光學重建顯微鏡(STORM)
所提供的寬視場的多個成像模式中,激光點掃描共聚焦,多光子熒光顯微鏡允許非侵入性的,固定和活細胞和組織中有高水平的特異性生化時間分辨成像。盡管傳統的熒光顯微鏡的優點,該技術在超微結構的調查,由于光的衍射,可以與標準的目標捕獲的信息量限制設置的分辨率極限的阻礙。在過去的幾年中,已經采用了一些新穎的儀器為基礎的方法來規避衍射極限,包括近場掃描光學顯微鏡(NSOM),受激發射損耗(STED)顯微鏡,
2020-09-04
-
徠卡顯微鏡:熒光顯微鏡介紹
熒光顯微鏡的光學顯微鏡是一種特殊形式。它使用目標波長的光激發后發射光的熒光染料的能力。蛋白質的利益可以通過抗體染色或熒光蛋白標記的熒光染料標記的。它允許一個單一分子物種的分布的測定,其量和其在細胞內的本地化。此外,可以進行共定位和相互作用的研究,觀察到的離子濃度,使用可逆地結合染料,如Ca 2 +和呋喃-2和內吞作用和胞外分泌的細胞過程,如觀察。今天,它甚至可以將圖象分的幫助下,熒光顯微鏡的分辨率
2020-09-04
-
奧林巴斯顯微鏡:鏡子的介紹
鏡子是被人利用,利用光的力量,也許是最古老的光學元件,甚至早于原油鏡頭。史前穴居迷住了他們的倒影在未受干擾的池塘和其他水體,但毫無疑問,直到埃及金字塔文物可以追溯到公元前1900年左右進行了檢查,沒有發現最早的人造鏡。在希臘 - 羅馬時期和中世紀鏡由高度拋光的金屬,如青銅,錫,銀,塑造成微微凸起的磁盤,提供超過一千年的人類。而不是直到晚12或早期第十三世紀中使用玻璃與金屬背襯的開發是為了尋找眼鏡,
2020-09-04
-
徠卡顯微鏡:明亮的熒光共振掃描
觀察的快速生物過程需要高速成像系統。共聚焦掃描顯微鏡有一個固有的障礙:串行記錄的圖像元素。因此,基于攝像頭的系統,或其它的方法(不是真正的共焦掃描方法)被應用。對于真正的共聚焦掃描系統,只有更高的掃描速度可以提高時間分辨率。因此,諧振掃描系統已允許行頻率最高為16千赫(非共振掃描儀相比,3千赫)。信號噪聲的討論帶來了意想不到的好處共振掃描:,熒光亮和熒光染料照片預應力。?真正的激光共聚焦掃描照明模
2020-09-04
-
尼康顯微鏡:顯微物鏡的屬性
三個關鍵的設計特點的物鏡顯微鏡的極限分辨率極限。這些包括用來照亮試樣的孔徑角的光錐物鏡捕獲,和對象空間中的物鏡前透鏡和被檢體之間的折射率的光的波長。圖1中顯示的是通過一個簡單的雙透鏡的阿貝聚光照明顯微鏡的物鏡的剖開圖。光通過聚光鏡被組織成一個光錐到樣品上發出,然后被發送到物鏡前透鏡元件作為反錐形。照明錐的大小和形狀是一個函數的組合的物鏡和聚光鏡的數值孔徑。物鏡的孔徑角是由希臘字母θ表示,將在下面詳
2020-09-04
-
奧林巴斯顯微鏡:物鏡的數值孔徑和分辨率
顯微鏡物鏡的數值孔徑是其收集光并解決細標本細節在一個固定的物體距離的能力的量度。圖象形成光波穿過試樣和在倒置錐體進入物鏡,如圖1這個錐形光的縱向切片顯示了孔徑角,是由物鏡的焦距確定的值。角μ是二分之一的數值孔徑角(A),它與通過以下等式的數值孔徑:數值孔徑 (NA) = n(sin μ)其中n是物鏡的前透鏡和試樣玻璃蓋,一個值,該范圍為1.00空氣1.51專門浸沒油之間的成像介質的折射率。許多作者
2020-09-04